
Build E2E Integration
Tests Without Managing
Test Environments or
Test Data

GUIDE TO

www.hypertest.co

HYPERTEST



Creating relevant and compliant test data is a significant hurdle. Test
data must not only reflect realistic scenarios for accurate testing but
should also be consistent in nature. Generating such data in sufficient
volumes to cover all test cases is a time-consuming task that is often
repetitive.

Discrepancies between test and
production data led to over 30%
of defects going undetected until
after deployment

As software development cycles become increasingly agile and the
demand for faster release schedules grows, the ability to efficiently
test applications end-to-end (E2E) in an integrated manner becomes
crucial. QA professionals and SDETs often face significant challenges in
managing test environments and preparing test data. 

CHALLENGES WITH PREPARING TEST DATA

Test data must accurately
reflect production data to
ensure that tests are
realistic and meaningful.
However, creating and
maintaining such data sets
can be difficult due to
changing production data
schemas and the need for
data to cover all possible
test cases.

Mocking complex dependencies
(e.g., APIs, databases) accurately
can be difficult to configure and
keep in sync with actual services.
Mocked data can diverge from
production behavior, resulting in
tests that pass in isolation but fail
in real-world scenarios.

Check out our guide on No More Writing
Mocks: The Future of Integration Testing

https://youtu.be/neAEx0wtc-k?si=n36T7ujrJxdI9wHu
https://youtu.be/neAEx0wtc-k?si=n36T7ujrJxdI9wHu


Maintaining multiple test environments is both complex and resource-
intensive. Each environment needs to replicate the production setup to
ensure tests are realistic. This includes mirroring database schemas,
third-party services, and various server configurations. 

MANAGING TEST ENVIRONMENTS IS A TASK

The discrepancy between environments often leads to the "works on
my machine" syndrome, where code behaves differently in
production than in test environments, leading to critical bugs in live
applications.

Assertions might break if the data isn’t in the expected state. For
data to remain consistent, it requires regular resets or complex
handling, introducing overhead and delay test execution.

When one test modifies the
environment or data, it can
interfere with other tests,
leading to assertion failures
due to unintended side effects.
Managing isolation within
shared environments, or
creating isolated test
environments, can be both
technically challenging and
resource-intensive.

E2E integration tests often rely
on multiple dependencies,
such as databases, APIs, and
third-party services, which
need to be available and
behave predictably during
testing. Managing these
dependencies within the test
environment is challenging
because they may not always
be under direct control.

Perform E2E Testing
Without Preparing Test
Data 

Watch a webinar on 



How HyperTest is going to
change the way you test?

HyperTest is a game
changer, it has significantly
saved time and effort by
green-lighting changes
before they go live with
our weekly releases.

HyperTest captures real interactions between code and external
components using actual application traffic, then converts it into tests
which can be replayed at your pre-commit stage.

Built on top of open telemetry,
it get’s initialized in your
service just like an application
performance monitoring
tool(APM) would and gathers
telemetry data such as logs,
traces and metrics from this.

It is built on the principal of something called RECORD mode and
REPLAY mode.



In the RECORD mode, it will record all the incoming requests to the
application, along with it's payload, out bound calls made to any 3rd
party application like a database, messaging queue or a caching
application and their responses. It will do this 24/7 to establish the
baseline response of an application.

As soon as the developer makes a change in the code, HyperTest runs
these requests again in REPLAY mode and this time, the new response
or the actual response will be compared to the previously generated
baseline response to catch any regressions caused by the change in
the code.

THIS LEADS TO CERTAIN ADVANTAGES:-

➡️ Never worry about creating or managing test data

HyperTest can test stateful flows without needing teams to create or
manage test data. Just from service’s traffic, it can easily create test
data that can be utilized to build your tests automatically.
It keeps on updating these tests from the most recent iteration of data
that it gets from this traffic.



Click here to know
why we built
HyperTest

➡️ No need to manage test environments

These tests can be recorded from any environment and can be run on a
local machine, thereby, eliminating the need for separate environment
for just testing.

➡️ All external dependencies are mocked automatically

HyperTest SDK, that sits on the service, can mock it’s interaction with
any 3rd party service, e.g. a database layer or a messaging queue,
automatically without needing to use any particular framework like
JEST, MOCHA etc.

This becomes advantageous as you don’t need to perpetually run any
of these 3rd party applications in sync with your service when testing
your service.

➡️ No need to provide any assertions

Since HyperTest records the whole traffic of the application, it
automatically records the whole workflow of your application. It
essentially registers the logic and the mannerism of the application,
which thereby eliminates any need for asserting the business logic for
the test. 



Setting up Hypertest
Use the link http://v2-beta-external.hypertest.co:8001/dashboard/#/login
to login.

Sign up with SSO. You can
either sign up with a google
account or a GitHub account.

Add your first service on the dashboard. Once your service is created,
copy it’s service identifier.

Now open your source code in a source code editor and add SDK in code
and Initialize open telemetry sdk with HyperTest. In serviceID, add your
service ID copied from the dashboard. In exporterURL, you can use the
logger URL: http://v2-beta-external.hypertest.co:4319

Add a few dependencies to the package.json of your application as
shown below.

http://v2-beta-external.hypertest.co:8001/dashboard/#/login
http://v2-beta-external.hypertest.co:8001/dashboard/#/login
http://v2-beta-external.hypertest.co:4319/


Add a few scripts to run HyperTest in your package.json as shown
below.

Create a .npmrc file and add your npmoken as per the format given
below. This token will be shared by the HyperTest team when you
sign up to the platform.

Add a config file, .htTestConf.js, in your root folder. You can fill this
as the example given below.

Open a terminal and install HyperTest.

Setup HyperTest
with this easy
video tutorial



Generating Greatness
Companies like Porter,
Paysense, Nykaa, Airmeet,
Skuad and Fyers leverage
HyperTest to accelerate time to
market, reduce delays and
improve code quality without
needing to write or maintain
automation

Summary

 Node SDK Launch

2023

Launched our
Java SDK

2024

100 services go
live

2023

HyperTest was
started

2022

Building E2E style Integration Tests Without
Managing Test Environments or Test Data

Managing multiple tests environments and
preparing test data can be time-consuming
and repetitive. With HyperTest’s ability to
smartly mock-out the real data, you can
skip the test data preparation entirely and
you’re also free to run your tests
seamlessly from any environment, freeing
you to focus on building and scaling your
tests without extra setup overhead.

HYPERTEST

http://hypertest.co/
http://hypertest.co/
http://hypertest.co/
http://hypertest.co/

